Specialized Support Vector Machines for open-set recognition

نویسندگان

  • Pedro Ribeiro Mendes-Junior
  • Jacques Wainer
  • Anderson Rocha
چکیده

Recently, the open-set recognition problem has received more attention by the machine learning community given that most classification problems in practice require an open-set treatment. Thus far, many classifiers were mostly developed for the closed-set scenario, i.e., the scenario of classification in which it is assumed that all test samples belong to one of the classes the classifier was trained with. In the open-set scenario, however, a test sample can belong to none of the known classes and the classifier must properly reject it by classifying as unknown. It is a common scenario in practice because unknown samples can appear at usage time. In this work, we present an extension upon the well-known Support Vector Machines (SVM) classifier, called the Specialized SVM, suitable for recognition in open-set scenarios. The proposed method bounds the region of the feature space in which a test sample would be classified as known (one of the known classes), making it finite. The same cannot be guaranteed by the traditional SVM even using the Radial Basis Function (RBF) kernel. We conducted experiments comparing the proposed method with state-of-the-art open-set classifiers and show its effectiveness.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparative Study of Extreme Learning Machines and Support Vector Machines in Prediction of Sediment Transport in Open Channels

The limiting velocity in open channels to prevent long-term sedimentation is predicted in this paper using a powerful soft computing technique known as Extreme Learning Machines (ELM). The ELM is a single Layer Feed-forward Neural Network (SLFNN) with a high level of training speed. The dimensionless parameter of limiting velocity which is known as the densimetric Froude number (Fr) is predicte...

متن کامل

Face Recognition using Eigenfaces , PCA and Supprot Vector Machines

This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person’s face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and...

متن کامل

A comparative study of performance of K-nearest neighbors and support vector machines for classification of groundwater

The aim of this work is to examine the feasibilities of the support vector machines (SVMs) and K-nearest neighbor (K-NN) classifier methods for the classification of an aquifer in the Khuzestan Province, Iran. For this purpose, 17 groundwater quality variables including EC, TDS, turbidity, pH, total hardness, Ca, Mg, total alkalinity, sulfate, nitrate, nitrite, fluoride, phosphate, Fe, Mn, Cu, ...

متن کامل

Separating Well Log Data to Train Support Vector Machines for Lithology Prediction in a Heterogeneous Carbonate Reservoir

The prediction of lithology is necessary in all areas of petroleum engineering. This means that to design a project in any branch of petroleum engineering, the lithology must be well known. Support vector machines (SVM’s) use an analytical approach to classification based on statistical learning theory, the principles of structural risk minimization, and empirical risk minimization. In this res...

متن کامل

Fusion Classifier for Open-Set Face Recognition with Pose Variations

A fusion classifier composed of two modules, one made by a hidden Markov model (HMM) and the other by a support vector machine (SVM), is proposed to recognize faces with pose variations in open-set recognition settings. The HMM module captures the evolution of facial features across a subject’s face using the subject’s facial images only, without referencing to the faces of others. Because of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1606.03802  شماره 

صفحات  -

تاریخ انتشار 2016